
TRAINING
AND TESTING OF GLIDE
BY OPENAI

STEP

 Create the data
folder for testing and

training the glide

In our previous tutorial, we trained the DALLE model to do the same and
it did provide us good results.

1

1

Train the GLIDE
model with our

dataset

Change the parameters
in the model to generate

better results

 Create the data folder for testing and training

We have used a total of 92 images for our experiment, each image is a .jpg image with
dimensions of 256 x 256. And along with these images we have also provided 92 text files
explaining the image respectively.

The naming given to these files is very important for the code to work properly.

If the image name is “Singing_0000000.jpg”, then the text file name should be
“Singing_0000000.txt”.

All these image and text files should be stored in a folder called data.

Cloning is a process of creating an identical copy of a Git Remote Repository to the local
machine.

You can run the following command to clone our code .

Train and test the GLIDE model with our BotPeg dataset
to create images using the text prompt

Generate the images
with our trained and

tested model

Run the test script to
check if model is

generating images

2

5 4

3

STEP 2

Train the GLIDE model with our dataset

STEP 3

Run the test script to check if model is generating images

STEP 4

Generate the images with our trained and tested model

STEP 5

Change the parameters in the model to generate better results

GOAL

git clone https://github.com/PegHeads-Inc/PegHeads-Tutorial-5.git

python -m pip install -r requirements.txt

import wandb

!wandb login

python train_glide.py --data_dir "./data" --use_captions --epochs 20

--project_name "glide-finetune" --batch_size 4 --learning_rate 1e-04

--side_x 64 --side_y 64 --resize_ratio 1.0 --uncond_p 0.2

--checkpoints_dir "./checkpoints"

Run the glide_testing.ipynb file for testing, its divided into the following:

Try the testing code with different text prompts to generate images,

We tried the following text prompts and got the following results.

1. BotPeg Singing

You can change the batch size, and epochs parameters for testing.

if you try out the code for the same text prompts for different number of epochs you will see
the difference in the generated images, we found that the more number of epochs you run
it with the better images it produces.

We tried the prompt “BotPeg Singing” with 200 epochs, when compared to the image shown
above which was the result of 20 epochs the images shown below are better.

PLEASE STAY TUNED FOR OUR UPCOMING
TUTORIAL ON DALL-E2
For more information check out:

https://github.com/afiaka87/glide-finetune

TUTORIAL 5

GLIDE (Guided Language-to-Image Diffusion for
Generation and Editing). This diffusion model achieves
performance comparable to DALL-E despite utilizing
only one-third of the parameters.

The classifier is first trained on noised images, and
during the diffusion sampling process, gradients
from the classifier are used to guide the sample
towards the label.

GLIDE needs more minor sampling delay and
does not require CLIP reordering.

What is

GLIDE?

Clone the
repository
from our
Github

Clone the
repository

from our
Github

The first block has the code for importing all the libraries like PIL,IPython,torch,
glide_text2im.

Import the
libraries

The rest of the blocks have the code to train the model and generate the images as per
the text prompt provided.

Run The
Code

Insert the
sample

parameters

To train the model we need to run train_glide.py, and use the following command to
do so.

as you can see in this command we are running the train_glide.py with the following
arguments

--data_dir

--use_captions

--epochs

--project_name

--batch_size

--learning_rate

--side_x

--side_y

--resize_ratio

--uncond_p

--checkpoints_dir

gives the location of the data folder

whether to use captions or not

gives the number of epochs for running the code, we
can start with 20

gives the project name

specifies the number images to be generated

specifies the learning rate of the model

size of the image(width)

size of the image(height)

specifies the image resize value

The base model should be tuned for "classifier free
guidance". This means you want to randomly replace
captions with an unconditional (empty) token about
20% of the time. This is controlled by the argument
--uncond_p, which is set to 0.2 by default

name of the directory to store the .pt files

Train the
Model

You can use our BotPeg dataset for trying out the code, the following link can be used to
download our dataset.

https://drive.google.com/file/d/1svCu920Yb2adiO6XPQX3ipl-eBzZ7bYC/view?usp=sharing

INPUT

The code will now generate a list of .pt files and save it in a folder called checkpoints.
Please note that each .pt file will be in gigabytes and might take up a lot of space in
your memory, so if you're running for more than 20 epochs make sure to delete the first
few .pt files from the checkpoints folder, you can use the last .pt file generated for the
testing process.

OUTPUT

Install the following libraries.

All the libraries are listed in the requirements.txt file. You just need to run this file using the
following command and the libraries will be automatically installed for you hassle-free.

Install the
required
libraries

Steps for registering are as follows.

Go to wandb.ai/site and click sign up. now you can sign up with Google or GitHub or
email and password.

After signing up, you will have to fill out some information about yourself.

Once you finish you will be taken to the home page and can copy the wandb API key.
Don't share it with anyone but you can reset it.

Feel free to take look at docs: https://docs.wandb.ai/quickstart

Run the following command to install and login to wandb in colab

Login to
WANDB

Install the
required

libraries and
Login to
WANDB

INPUT

Data
Folder

Train the
Model

Run the
train_glide.py

OUTPUT

Set of .pt
files

Import the
libraries

Insert the sample
parameters

Run the
code

●

●

●

●

●

unzip the folder and add it to the glide folder downloaded from our GitHub
or you could create your own data folder as explained in step1.

Argument Used for

prompt

batch_size

base_timestep_

respacing

sr_timestep_

respacing

glide_path

{type: "string"}
The text prompt used to generate the image for example.
“BotPeg Singing”

{type:"number"} Number of images to be generated

{type:"string"} example 40
use 40 diffusion steps for fast sampling

'fast27' use 27 diffusion steps for very fast sampling

Path of the .pt file for example
'./checkpoints/glide-ft-87x799.pt'

Parameter Value

