
TRANSFER
LEARNING: TO CREATE
A PRE-TRAINED MODEL

STEP 1

Find a suitable model to train your data on

We have selected the VAE and DALLE model.

DALLE is a 12-billion parameter version of GPT-3 trained to generate images from text
descriptions, using a dataset of text–image pairs. But we are training it with our peghead
images so that we get better results.

When we tried to generate images without training DALLE with the pegheads we did not get
any output.

Isolated, single task learning.

Knowledge is not retained or
accumulated. Learning is performed w.o.
consideration for knowledge learned
from other tasks.

Train a pre-trained model with our dataset and
create a pre-trained model of our own to do our task.

TRADITIONAL ML TRANSFER LEARNINGVS

STEP 2

Train VAE model with our images and text

A variational autoencoder, also known as a VAE, is the artificial neural network architecture
introduced by Diederik P. Kingma and Max Welling, belonging to the families of probabilistic
graphical models and variational Bayesian methods.

Install the following libraries:

dalle-pytorch

wandb

gdown

This library has the required dalle model and methods for training
the model with our images

This will help you connect with the wandb database where the
results can be stored.

This will help you to download the input files from your drive into
the collab

Go to wandb.ai/site click sign up. now you can sign up with google or GitHub or
email and password.

After signing up, you will have to fill out some information about yourself.

Once you finish you will be taken to the home page and can copy wandb API key.
Don't share with anyone but you can reset it.

Feel free to take look at docs: https://docs.wandb.ai/quickstart

INSTALL THE
REQUIRED

LIBRABRIES

INSTALL THE
REQUIRED

LIBRABRIES

Steps for registering are as follows:

Run the following command to install and login to wandb in collab

attributes

images

parts

bounding_boxes.txt

Certinities.txt, class_attribute_labels_continuous.txt,
image_attribute_labels.txt

The images are organized in subdirectories based on
Types of emotion or action

part_click_locs.txt, part_locs.txt, parts.txt

Each image contains a
single bounding box label.
with each line
corresponding to one
image:

where <image_id>
corresponds to the ID in
images.txt, and <x>, <y>,
<width>, and <height> are
all measured in pixels

<image_id> <x> <y>

<width> <height>

consider the following
example for the same:

1 195 195 580 400 here,

image_id=1,x=195,y=195

width=580,height=400

Folder1-name: botpeg

Folder or Filename Contents

LOGIN TO
WANDB

In the previous step we got vae.pt as our output, it’s the VAE model trained with our peghead
images, we will use this as an input to our DALLE model along with a folder named
image-and-text-data, which contains the images and text files. You can use the same files
which you used for training and testing the VAE model.

For example:

Dalle uses the simple tokenziser to tokenize
the text inputs and then learns how to
generate images from the given text.

BotPeg Singing

INPUT

You can use the following code to train DALLE with your images.

 https://github.com/PegHeads-Inc/PegHeads-Tutorial-4//blob/main/train_dalle.py

Once you run the code you will get a trained dalle model which will have learnt what is a
botpeg.

Please note once you run the code in visual studio make sure that you clear you system
cache memory because it fills it up with the wandb results and makes the system slow.

RUN THE
CODE

A file called dalle.pt will be generated that is you pretrained DALLE modelOUTPUT

We mainly use 2 folders.

The explanation about each file and the contents of it are as follows:
INPUT

GOAL

import wandb

!wandb login

The list of all attribute names is contained in the file attributes/attributes.txt, with each line
corresponding to one attribute:

Our files looks as follows:

Convert these into a zip folder and save it in your drive.

https://colab.research.google.com/drive/1RkTVfcRDbvcPb0uUIVdh2EQWoR-PP2KZ?usp=sharing

Note: This step is done to ensure that the data you are training the model with is
organized properly .also if you have a huge amount of data you can zip it else you can
load them directly to the colab and skip the zipping part.

Check out our git repository for the entire code.

STAY TUNED FOR OUR NEXT TUTORIAL
If you would like to contribute to this tutorial with any
information or tests and upload to our GitHub please do.
This is an open platform to help anyone learn AI and
machine learning skills.

https://github.com/PegHeads-Inc/PegHeads-Tutorial-4/issues

TUTORIAL 4

Transfer learning is a machine learning technique that
enables data scientists to benefit from the knowledge
gained from a previously used machine learning model for
a similar task. An example would be using the knowledge
gained while learning to classify cars to recognize the birds
in the sky.

What is
transfer
learning?

When there is not enough data and when there is not
enough time to train the model

When to use transfer
learning?

Learning new tasks relies on previously
learned tasks.

Learning process can be faster, more
accurate and/or need less training data.

Dataset 1 Learning
System Task 1

Dataset 2 Learning
System Task 2

Dataset 1 Learning
System Task 1

Dataset 2 Learning
System Task 2

KNOWLEDGE

Find a suitable
model to train your

data on

1

Train the VAE model
with our dataset

Change the parameters in
the model to generate

better results

Generate the images with
our pretarined model

Train the DALLE
model with our

dataset

2

5 4

3

LOGIN TO
WANDB

INPUT TRAIN THE
MODEL

OUTPUT

botpeg folder

pegheads folder
vae.pt

Run the
colab code

STEP 3

Train the DALLE model with Peghead images and test it to see if it
generates any output.

Next you can use the code below to generate the images (generate.py)

 https://github.com/PegHeads-Inc/PegHeads-Tutorial-4/blob/main/generate.py

Note: We trained our model with 20 epochs first and the results we blur.

STEP 4

Generate the images with our pretarined model

So we tried training it with 200 epochs and a batch size of 1. And we got better results as
shown below.

STEP 5

Change the parameters in the model to generate better results

INPUT RUN THE CODE OUTPUT

vae.pt,
image-and-text-data dalle.pttrain_dalle.py

train

test

text_c10

has all the images and text files to train the model

has all the images and text files to test the model

it has some sample texts

Folder2: peghead

Folder or Filename Contents

Certinities.txt The list of all certainty
names with each
corresponding to one
certainty

<certainty_id>

<certainty_name>

consider the following
example for the same:

1 not visible here

certainty_id=1 and

certainty_name=not

visible

Folder or Filename Contents

image_attribute_

labels.txt
The set of attribute labels
for each image is contained
in the file

where <image_id>,
<attribute_id>,
<certainty_id>
correspond to the IDs in
images.txt, attributes/
attributes.txt, and
attributes/ certainties.txt
respectively. <is_present>
is 0 or 1 (1 denotes that the
attribute is present). <time>
denotes the time spent to
label in seconds.

<image_id>

<attribute_id>

<is_present>

<certainty_id> <time>

consider the following
example for the same:

1 1 1 4 45 here

image_id=1,attribute_id=

1,is_present=1,certainty

_id=4,time=45

class_attribute_

labels_continuous

.txt

Each line corresponds to
one class (in the same order
as classes.txt) and each
column contains one
real-valued number
corresponding to one
attribute (in the same order
as attributes.txt). The
number is the percentage
of the time (between 0 and
100) that a human thinks
that the attribute is present
for a given class

Our prgheads have 13
classes in total and 16
attributes hence.

This will have 16 columns
for each attribute and 13
rows for each class in case
of our peghead folder

classes.txt, The list of class names
(botpeg’s actions and
emotions) is contained in
the file with each line
corresponding to one class:

<class_id> <class_name>

consider the following
example for the same:

1 Dance_01 here

class_id=1 and

class_name=Dance_01

image_class_

labels.txt
The ground truth class
labels (botpeg labels) for
each image are contained
in the file, with each line
corresponding to one
image:

where <image_id> and
<class_id> correspond to
the IDs in images.txt and
classes.txt, respectively.

<image_id> <class_id>

consider the following
example for the same:

1 1 here image_id=1 and

class_id=1

images.txt The list of image file names
is contained in the file , with
each line corresponding to
one image

<image_id> <image_name>

consider the following
example for the same:

1 Dance_01.jpg here

image_id=1 and

image_name=Dance_01.jpg

train_test_split

.txt
The suggested train/test
split is contained in the file
with each line
corresponding to one
image:

where <image_id>
corresponds to the ID in
images.txt, and a value of 1
or 0 for
<is_training_image>

denotes that the file is in
the training or test set,
respectively.

<image_id>

<is_training_image>

consider the following
example for the same:

1 1 here image_id=1 and

is_training_image=1

attributes

part_click_locs.txt A set of multiple part
locations for each image,
with each line
corresponding to the
annotation of a particular
part in a particular image.

where <image_id>,
<part_id>, <x>, <y> are
in the same format as
defined in parts/
part_locs.txt, and <time> is
the time in seconds spent
to label

<image_id> <part_id> <x>

<y> <visible> <time>

consider the following
example for the same:

1 1 0 0 0 1 here

image_id=1,part_id=1,x=0

,y=0,visible=0,time=1

Folder or Filename Contents

part_locs.txt The set of all ground truth
part locations is contained
in the file parts/
part_locs.txt, with each line
corresponding to the
annotation of a particular
part in a particular image:

where <image_id> and
<part_id> correspond to
the IDs in images.txt and
parts/parts.txt, respectively.
<x> and <y> denote the
pixel location of the center
of the part. <visible> is 0
if the part is not visible in
the image and 1 otherwise.

<image_id> <part_id> <x>

<y> <visible>

consider the following
example for the same:

1 1 0 0 0 here

image_id=1,part_id=1,x=0

,y=0,visible=0

parts.txt The list of all part names is
contained in the file
parts/parts.txt, with each
line corresponding to one
part:

<part_id> <part_name>

consider the following
example for the same:

1 left antenna here

part_id=1,part_name=left

antenna

<attribute_id> <attribute_name>

consider the following example for the same:

1 botpeg's_hand_curved::up

here attribute_id=1 and attribute_name=botpeg's_hand_curved::up

 Parts

attributes.txt

FOR MORE INFORMATION CHECK OUT: https://github.com/lucidrains/DALLE-pytorch

