
VIDEO
CONCATINATION

A FIVE STEP PROCESS

STEP

Get the different
video clips that

you want to merge
(C1.mp4, C2.mp4, ... ,Cn.mp4) :

Here 1 n is the no of video clips

1

1

Import
MoviePy.editor

library from
Python

Final merged
video is generated

and saved as
(final.mp4)

Gather all the video clips that you want to merge together. In our example we have
used the following mp4 files.

STEP 2

MoviePy (full documentation) is a Python library for video editing: cutting,
concatenations, title insertions, video compositing (a.k.a. non-linear editing), video
processing, and creation of custom effects.

MoviePy can read and write all the most common audio and video formats,
including GIF, and runs on Windows/Mac/Linux, with Python 2.7+ and 3 (or only
Python 3.4+ from v.1.0).

MoviePy depends on the Python modules Numpy, imageio, Decorator, and tqdm,
which will be automatically installed during MoviePy’s installation. The software
FFMPEG should be automatically downloaded/installed (by imageio) during your
first use of MoviePy (installation will take a few seconds). If you want to use a
specific version of FFMPEG, follow the instructions in config_defaults.py. In case of
trouble, provide feedback.

Installation

Installation by hand: download the sources, either from PyPI or, if you want the
development version, from GitHub, unzip everything into one folder, open a
terminal and type:

To combine video
clips of different

sizes into a single
video file.

Use the concatinate
videoclips function from

the MoviePy.editor library
to merge the clips

Save the video in
different variables

(C1, C2, ... , Cn)

2

5 4

3

Backjump Colorchanging Eyeroll

Frontflip Highbounce Jumpingjack

Frontdoubleflip

STEP 3

Create variables to store the video clips. To do this we are going to use the
VideoFileClip function.

STEP 4

Concatination or merge, we will be using the concatenate_videoclips which is a
function built in moviepy.editor that does the concatenation for you.

STEP 5

Write the contents of final_clip to a mp4 file and get the final vedio which you can
run and check. We use the write_videofile function to do this.

GOAL

$ (sudo) python setup.py install

Installation with pip: if you have pip installed, just type this in a terminal:

$ (sudo) pip install moviepy

A VideoFileClip is a clip read from a video file (most formats are supported) or a GIF
file. You load the video as follows:

Note that these clips will have an fps (frame per second) attribute, which will be
transmitted if you do small modifications of the clip, and will be used by default in
write_videofile, write_gif, etc. For instance:

Concatenated result is now stored in the variable final_clip

Save and run, it will generate final.mp4 which is the end result.

Find the source code in our github page.

STAY TUNED FOR OUR NEXT TUTORIAL
where we show an example of how to select required
video clips from a dropdown menu.

For example:

myclip = VideoFileClip("some_video.avi")

myclip = VideoFileClip("some_animation.gif")

$ final_clip = concatenate_videoclips([clip1, clip2, clip3,

clip4])

myclip = VideoFileClip("some_video.avi")

print (myclip.fps) # prints for instance '30'

Now cut the clip between t=10 and 25 secs. This conserves the fps.

myclip2 = myclip.subclip(10, 25)

myclip2.write_gif("test.gif") # the gif will have 30 fps

from moviepy.editor import *

clip is the video from 00:56 to 01:06

clip = VideoFileClip("BackJumping.mp4")

clip2 = VideoFileClip("colorchange.mp4")

final_clip = concatenate_videoclips([clip, clip2])

final_clip.write_videofile("final.mp4")

Once installed just import moviepy.editor to your code as shown below:

$ from moviepy.editor import *

